BIRZEIT UṄIVERSITY

Faculty of Engineering and Technology
 Electrical and Computer Engineering Department

Instructor: Dr. Abdellatif S. Abu-Issa
First Semester 2021-2022
Duration: $\mathbf{1 3 5}$ minutes

Q1) (20 points)
The following figure shows a Built-In Self-Test Circuit for a 2-bit magnitude comparator. The test vectors are generated using a 4-bit LFSR and the results are analysed using a 3-bit MISR as shown in the figure.
a) Show the first 6 test vectors generated by the LFSR. The first vector of the LFSR is " 1101 ", you should show the next 5 test vectors. [5 points]
b) What is the fault free signature of this system after we apply these test vectors? (Initial value of the MISR " 010 ") [8 points]
c) Assume that the output $\mathrm{Z}(\mathrm{a}=\mathrm{b})$ is Sa 1 . What is the signature after we apply the same test vectors generated by the LFSR? (Initial value of MISR is " 010 ") [7 points]

Q2) (20 points) For the circuit shown in the following figure:

a. Use the Boolean Difference Method to find when output g is sensitive to input b ? Then find the test vectors for b sa0. (6 points)
b. Use D-Algorithm to find all test vectors for f sa1. (5 points)
c. Find all the test vectors for g sa1. (2 points)
d. Find all the test vector for g sa0. (2 points)
e. Find all the test vectors for e sa0. (2 points)
f. State all the faults that can be detected by Test Vector $a b c=010$. (3 points)

Q3) 40 points
a) For the following circuit
i) Determine the type of Hazard and the values of inputs at which hazard may occur. [3 points]
ii) Draw the hazard-free circuit. [7 points]

b) Show the primitive flow table of a negative edge D-FF (D Flip Flop). (8 points)
c) Given the following primitive flow table, go through asynchronous procedure design to implement the circuit using SR latches. (22 points)

Stable State	Inputs		output	Notes
	x 1	x 2	Q	
a	1	1	1	After c
b	0	1	0	After e
c	0	1	1	After a, f
d	1	0	0	After a, e, f
e	1	1	0	After b, d
f	0	0	1	After b , c, d

